Topic 6 -Second order linear ODEs Theory

We will now worsider second
order linear ODEs of the form
$$a_2(x) y'' + a_1(x) y' + a_0(x) y = b(x)$$

Where $a_2(x), a_1(x), a_0(x), b(x)$ are
continuous on some interval I.
For now we will assume that $a_2(x) \neq 0$
for all x in I
If $a_2(x) = 0$ at some point x in I then
you get a "singular point" and that
needs other techniques.
We may also include initial-value constraints
 $y'(x_0) = y'_0$ and $y(x_0) = y_0$
where xo is in the interval I.

Ex: Consider the ODE (\star) $y'' - 7y' + 10y = 24e^{x}$ on the interval $T = (-\infty, \infty)$ $f(x) = c_1 e^{2x} + c_2 e^{2x} + 6e^{2x}$ A note that f is defined on all of I where c_1, c_2 are any constants. We will now show that f solves (+) on I. We have that $f(x) = c_1 e^{2x} + c_2 e^{5x} + 6e^{x}$ $f'(x) = 2c_1e^{2x} + 5c_2e^{5x} + 6e^{x}$ $f'(x) = 4c_1e^{2x} + 25c_2e^{5x} + 6e^{x}$ Thus, plugging f into the LHS of (*) gives f''(x) - 7f'(x) + 10f(x) $= 4c_1e^{2x} + 25c_2e^{5x} + 6e^{x}$ - 14 c1 e2x - 35 c2 ex - 42 ex $+|0c_{1}e^{2x}+|0c_{2}e^{5x}+60e^{x}$ = 24e×

Thus, f solves (t) on I.
Now let's see if we can use f to get
a solution to the initial-value problem

$$y'' - 7y' + 10y = 24e^{x}$$

 $y'(0) = 6$, $y(0) = 0$ (tt)
on the interval $I = (-\infty, \infty)$
We know that $f(x) = c_1 e^{2x} + c_2 e^{5x} + 6e^{x}$
solves $y'' - 7y' + (0y = 24e^{x})$.
Let's see if we can find c_1, c_2 so
that $f'(0) = 6$, $f(0) = 0$
 $6 = 2c_1 e^{0} + 5c_2 e^{0} + 6e^{0} = 6 = f'(0)$
 $0 = c_1 e^{0} + c_2 e^{0} + 6e^{0} = 6 = f(0)$

This gives

$$0 = 2c_1 + 5c_2$$

$$-6 = c_1 + c_2$$

$$2$$

We get
$$c_1 = -c_2 - 6$$
 from (2).
Plug this into (1) to get $0 = 2(-c_2-6)+5c_2$.
So, $12 = 3c_2$.
So, $c_2 = 4$.
Then, $c_1 = -4-6 = -10$.
Thus, $f(x) = -10e^{2x} + 4e^{5x} + 6x$ solves
the initial-value problem (**)
Summary of the above
The function $f(x) = c_1e^{2x} + c_2e^{5x} + 6e^{x}$
is a solution to $y'' - 7y' + 10y = 24e^{x}$
for any constants c_1, c_2 .
If we further impose the restriction
that $y'(0) = 6$ and $y(0) = 0$ then
 $f(x) = -10e^{2x} + 4e^{5x} + 6x$
Solves the ODE.

For the remainder of the class we will work on developing different methods to solve second order ODES.

Below we have a theorem for linear second order ODEs on when solutions exist and are unique.

Theorem: Let I be an interval. Let $a_2(x)$, $a_1(x)$, $a_2(x)$, b(x) be Continuous on I and $a_2(x) \neq 0$ for all x in I. If then Xo is a fixed point in IJ the initial-value problem $a_{2}(x)y'' + a_{1}(x)y' + a_{0}(x)y = b(x)$ $y'(x_{o}) = y'_{o}, y(x_{o}) = y_{o}$ has a unique solution on I.

We will begin with solving the
homogeneous linear second order ODE
$$a_2(x)y'' + a_1(x)y' + a_0(x)y = O$$

 $a_2(x)y'' + a_1(x)y' + a_0(x)y = O$
To do this we need to learn about
linear independence.

Def: Let I be an interval.
Let
$$f_{1,j}f_{2}$$
 be functions defined on I.
We say that f_{1} and f_{2} are linearly
We say that f_{1} and f_{2} are linearly
dependent on I if one of them is
a multiple of the other on I, that
is if either
 $f_{2}(x) = c_{1}f_{1}(x)$ for all x in I
or
 $f_{1}(x) = c_{2}f_{2}(x)$ for all x in I
where $c_{1,j}c_{2}$ are constants.

If no such constants exist, then we say that f, and fz are linearly independent on I.

Ex: Let
$$I = (-\infty, \infty)$$
.
Let $f_1(x) = x^2$ and $f_2(x) = -5x^2$.
Then f_1 and f_2 are linearly dependent
on I since
 $f_2(x) = -5f_1(x)$
for all x in I .
Or you could say that
 $f_1(x) = -\frac{1}{5}f_2(x)$

for all x in

Exi Let
$$I = (-\infty, \infty)$$
.
Let $f_i(x) = e^{2x}$ and $f_2(x) = e^{5x}$.
We will show that f_i and f_2 are
linearly independent on I .
We must show that $f_{ij}f_2$ are not
multiples of each other on I .
Case 1: Let's show that f_2 is not
a multiple of f_i on I .
Suppose $f_2(x) = c_i f_i(x)$ for all x in I .
Then, $e^{5x} = c_i e^{2x}$ for all x in $(-\alpha_j \infty)$.

Thus, $1 = c_1$ $e^3 = c_2$

But this is a contradiction since

$$1 \neq e^{3}$$
. Thus, no such c_{1} exists.
So, f_{2} is not a multiple of f_{1} on T .
Case 2: Can f_{1} be a multiple of f_{2} on T ?
Suppose $f_{1}(x) = c_{2} f_{2}(x)$ for all x in T .
Then, $e^{2x} = c_{2}e^{5x}$ for all x in $(-\infty, \infty)$.
So,
 $e^{0} = c_{2}e^{0}$ $4 = x = 0$
 $e^{2} = c_{2}e^{5}$ $4 = x = 1$
Then,
 $1 = c_{2}$
 $e^{3} = c_{2}$
But this cont happen since $1 \neq e^{-3}$.

So, f, cannot be a multiple of tz. By case I and case Z we know that f, and fz are linearly independent on I.

Def: Let
$$f_1$$
 and f_2 be differentiable
Functions on an interval I. The
Functions on an interval I. The
Wronskian of f_1 and f_2 is the
Wronskian of f_1 and f_2 is the
following determinant
 $W(f_1, f_2) = \begin{vmatrix} f_1 & f_2 \\ f_1' & f_2' \end{vmatrix} = f_1(x)f_2'(x) - f_2'(x)f_1(x)$
Notation for
determinant
 $\int f_1 & f_2 \\ f_1' & f_2' \end{vmatrix}$

l

$$\frac{E \times :}{f_2(x) = e^{5x}} \text{ is } f_2(x) = e^{5x} \text{ is } e^{2x} e^{5x} e^{5x$$

Theorem: Let I be an interval. Let
Theorem: Let I be an interval. Let

$$f_{1}, f_{2}$$
 be differentiable on I. If
the Wronskian $W(f_{1}, f_{2})$ is not the
the Wronskian $W(f_{1}, f_{2})$ is not the
zero function on I, then f_{1} and f_{2}
are linearly independent on I.
That is, if there exists
Some Xo in I where
 $W(f_{1}, f_{2})(x_{0}) \neq 0$, then
 f_{1} and f_{2} are linearly
independent.
 $W(f_{1}, f_{2})(x_{0}) = 0$

Ex: Let
$$I = (-\infty, \infty)$$
.
Let $f_1(x) = e^{2x}$, $f_2(x) = e^{5x}$.
Let's show that f_1 and f_2 are linearly
independent.
Above we saw that
 $W(f_1, f_2) = 3e^{7x}$
We want to find some x₀ in $I = (-\infty, \infty)$
where $W(f_{11}f_2) = 3e^{7x_0}$ is net zero
side note: what we are doing is checking whether
or not $3e^{7x}$ is the zero function
 $V = 3e^{3x}$ $V = 0$
zero function
For example at x₀=0 we see that
 $W(f_{11}f_2)(0) = 3e^{3(0)} = 3e^0 = 3 \neq 0$
Div by He previous the user

Thus by the previous (neuron $f_1(x) = e^{2x}$ and $f_2(x) = e^{5x}$ are linearly independent on $I = (-\infty, \infty)$

Theorem: [Linear, homogeneous, second order DDE]
Let I be an interval.
Let
$$a_2(x)$$
, $a_i(x)$, $a_o(x)$, $b(x)$ be
continuous on I. Suppose $a_2(x|\neq 0$
for all x in I.
Consider
 $a_2(x)y'' + a_i(x)y' + a_o(x)y = 0$ (***)
Suppose that
• $f_i(x)$ and $f_2(x)$ are linearly
independent on I, and
• $f_i(x)$ and $f_2(x)$ are both
solutions to (***)
Then every solution to (***) is
of the form
 $y_h = c_i f_i(x) + c_2 f_2(x)$ (we will
 $f_0(x) = 0$ (***)
For some constants $c_1(c_2, c_2)$ (***)

Ex: Let
$$I = (-\infty, \infty)$$
.
Let $f_1(x) = e^{2x}$, $f_2(x) = e^{5x}$.
We saw above that f_1 and f_2
We linearly independent on I .
are linearly independent on I .
Note that f_1 and f_2 both solve
Note that f_1 and f_2 both solve
the homogeneous, linear, second order ODE
the homogeneous, linear, second order ODE

$$\frac{2 \text{ heck:}}{f_1(x) = e^{2x}}, f_1'(x) = 2e^{2x}, f_1''(x) = 4e^{2x}$$

$$f_1'' - 7f_1' + 10f_1 = 4e^{2x} - 14e^{2x} + 10e^{2x} = 0$$

$$f_2(x) = e^{5x}, f_2'(x) = 5e^{5x}, f_2''(x) = 25e^{5x}$$

$$f_2'' - 7f_2' + 10f_2 = 25e^{5x} - 35e^{5x} + 10e^{5x} = 0$$

Therefore the general solution to

$$y'' - 7y' + 10y = 0$$

is
 $y_h = c_1 e^{2x} + c_2 e^{5x}$

Nuw we look at the general second order linear ODE.

Theorem: Let I be an interval.
Let
$$a_2(x)$$
, $a_1(x)$, $a_0(x)$, $b(x)$ be continuous
on I. Suppose $a_2(x) \neq 0$ for all x in I.
Consider
 $a_2(x)y'' + a_1(x)y' + a_0(x)y = b(x)$
Suppose that f_1 and f_2 are linearly
independent solutions to the homogeneous eqn
 $a_2(x)y'' + a_1(x)y' + a_0(x)y = 0$
on I.
Suppose that y_p is a particular solution to
Suppose that y_p is a particular solution to
 $a_2(x)y'' + a_1(x)y' + a_0(x)y = b(x)$
 $a_2(x)y'' + a_1(x)y' + a_0(x)y = b(x)$
 $a_2(x)y'' + a_1(x)y' + a_0(x)y = b(x)$
is of the firm
 $f(x) = y_h + y_p = C_1f_1(x| + C_2f_2(x) + y_p(x))$
for some constants $c_{1y}c_2$.

Ex; Consider the ODE

$$y'' - 7y' + 10y = 24e^{x}$$

On the interval $T = (-\infty, \infty)$
We saw earlier that $f_1(x) = e^{2x}$ and $f_2(x) = e^{2x}$
are linearly independent solutions to
 $y'' - 7y' + 10y = 0$
And so $y_{k} = c_{1}e^{2x} + c_{2}e^{5x}$
Let $y_{p} = 6e^{x}$. Then y_{p} is a particular
solution to $y'' - 7y' + 10y = 24e^{x}$ since:
 $y_{p}(x) = 6e^{x}$
 $y_{p}'(x) = 6e^{x}$
 $y_{p}''(x) = 6e^{x}$
 $y_{p}''(x) = 6e^{x}$
 $y_{p}'' = 7y' + 10y = 0$ we see it soluce
the equation:
 $y'' - 7y' + 10 = 6e^{x} - 42e^{x} + 60e^{x} = 24e^{x}$
Thus, by our theorems, every solution to
Thus, by our theorems, every solution to
 $y'' - 7y' + 10y = 24e^{x}$
is of the form
 $f(x) = y_{h} + y_{p} = c_{1}e^{2x} + c_{2}e^{x} + 6e^{x}$

Now our goal is to answer these questions:

he following are proofs of some of the previous theorems for those that are interested. We won't cover this in class It's mostly for me :) You would need some linear algebra and proofs background to read.

Theorem: Let I be an interval. Let fi, f2 be differentiable on I. If the Wronskian W(f1,f2) is not zero for at least one point in I, then f, and fz are linearly independent Un T. Suppose f, and fz are linearly dependent on I proof: Then there exist ci, cz, not both zero, where $c_1f_1(x) + c_2f_2(x) = 0$ for all x in I. $c_1 f'_1(x) + c_2 f'_2(x) = 0$ Thus, for all x in I. So, $\begin{pmatrix} f_1(x) & f_2(x) \\ f'_1(x) & f'_1(x) \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ Since $\binom{c_1}{c_2} \neq \binom{o}{o}$ we get that $\binom{f_1(x)}{f_1'(x)} \cdot \binom{f_2(x)}{f_2'(x)}$ is not invertible for each x in I. Thus, $W(f_1,f_2)(x) = 0$ for all x in I.

Theorem: [Linear, homogeneous, second order DDE]
Let I be an interval.
Let
$$a_2(x), a_i(x), a_o(x), b(x)$$
 be
continuous on I. Suppose $a_2(x) \neq 0$
for all x in I.
Consider
 $a_2(x)y'' + a_i(x)y' + a_o(x)y = 0$ (***)
Suppose that
• $f_i(x)$ and $f_2(x)$ are linearly
independent on I, and
• $f_i(x)$ and $f_2(x)$ are both
solutions to (***)
Then every solution to (***) is
of the form
 $c_i f_i(x) + c_2 f_2(x)$ [later we
will call
this y_h

proof:
By linearity,
$$c_1f_1(x)+c_2f_2(x)$$
 will be a
Solution to $(***)$.
Solution to $(***)$.

on I, by the previous theorem there
exists t in I where
$$W(f_{1},f_{2})(t) \neq 0$$
.
Let I be some solution of $(t+t+1)$.
Consider the system
 $c_{1}f_{1}(t) + c_{2}f_{2}(t) = I(t)$
 $c_{1}f_{1}(t) + c_{2}f_{2}(t) = I(t)$
This system will have a unique solution
for c_{1}, c_{2} since
 $W(f_{1},f_{2})(t) = \begin{cases} f_{1}(t) f_{2}(t) \\ f_{1}'(t) \\ t_{2}'(t) \end{cases} \neq 0$.
 $U(f_{1},f_{2})(t) = \begin{cases} f_{1}(t) f_{2}(t) \\ f_{1}'(t) \\ t_{2}'(t) \end{cases} \neq 0$.
 $E(t) = c_{1}f_{1}(x) + c_{2}f_{2}(x)$.
 $E(t) = c_{1}f_{1}(x) + c_{2}f_{2}(x)$.
By the linearity of $(t+t)$ We know Z
subisfies $(t+t)$. Z also satisfies the
satisfies $(t+t)$. Z also satisfies the
from above. Since I satisfies the
same initial value problem , by the

Theorem: Let I be an interval.
Let
$$a_2(x)$$
, $a_1(x)$, $a_0(x)$, $b(x)$ be continuous
on I. Suppose $a_2(x) \neq 0$ for all x in I.
Consider
 $a_2(x)y'' + a_1(x)y' + a_0(x)y = b(x)$
Suppose that f_1 and f_2 are linearly
independent solutions to the humogeneous eqn
 $a_2(x)y'' + a_1(x)y' + a_0(x)y = 0$
on I.
Suppose that f_p is a particular solution to
Suppose that f_p is a particular solution to
 $a_2(x)y'' + a_1(x)y' + a_0(x)y = b(x)$
 $a_2(x)y'' + a_1(x)y' + a_0(x)y = b(x)$
 $a_2(x)y'' + a_1(x)y' + a_0(x)y = b(x)$
is of the form y_h
 $f_1(x) = c_1f_1(x) + c_2f_2(x) + f_p(x)$
for some constants $c_{11}c_2$.

proof: Let f solve $a_2(x)y''+a_1(x)y'+a_0(x)y=b(x)$. Then, f-fp will solve the homogeneous equation. Hence $f - f_p = c_1 f_1 + c_2 f_2$ for some c_1, c_2 . So, $f = c_1f_1 + c_2f_2 + f_p$