Topic 6 -Second order linear ODEs Theory

We will now consider second order linear ODEs of the form
\n
$$
a_2(x) y'' + a_1(x) y' + a_2(x) y = b(x)
$$

\nWhere $a_2(x), a_1(x), a_2(x), b(x)$ are
\ncontinuous on some interval Γ .
\nFor now we will assume that $a_2(x) \neq 0$
\nfor all x in Γ
\n Γ f $a_2(x) = 0$ at some point x in Γ then
\n Γ f $a_2(x) = 0$ at some point x in Γ then
\nmeeds other techniques.
\nWe may also include initial-value constraints
\n $y'(x_0) = y'_0$ and $y(x_0) = y_0$
\nwhere x_0 is in the interval Γ .

Ex: Consider the ODE $y'' - 7y' + 10y = 24e^{x}$ (*) $y'' - 7y' + 10y = 24e^{x}$
On the interval $I = (-\infty, \infty)$ Ex: Consider the ODE
 $y'' - 7y' + 10y = 24e^x$ (*)

On the interval $I = (-\infty, \infty)$

Let
 $f(x) = C_1e^{2x} + C_2e^{5x} + 6e^x$ and of I

where C_1, C_2 are any constants. note that f $2x$ $5x$ $+6e^{x}$ + e^{x} + $e^{$ $f(x) = C_1 e^{2x} + C_2 e^{5x} + 6e^{x}$ all of I
 $f(x) = C_1 e^{2x} + C_2 e^{5x} + 6e^{x}$ $f(x) = c_1 e^{-x} + c_2 e^{x} + 6 e^{-x}$
Where c_1, c_2 are any constants. $f(x) = c_1 e^{2x} + c_2 e^{5x} + 6e^{x}$
Where c_1, c_2 are any constants. Let not I all of I
We will now show that f solves (A) on I. We will now show that f solves $(*)$ on I.
We have that $x + 5x$ $+6e^{x}$ $f(x) = c_1 e^{2x} + c_2 e^{x}$ $f(x) = c_1 e^x + c_2 e^x + b_3 e^x$
 $f'(x) = 2c_1 e^{2x} + 5c_2 e^{5x}$ $+6e^{x}$ $f''(x) = 4c_1$ $e^{2x} + 25c_2e^{5x} + 6e^{x}$ Thus, plugging f into the LHS of $(*)$ gives $f''(x) - 7f'(x) + 10f(x)$ $f''(x) - 7f'(x) + 10f(x)$
= 4c₁e^{2x} + 25c₂e^{5x} + 6e^x * $4c_1e + 25c_2e$
- $14c_1e^{2x} - 35c_2e^{5x}$ $-42c$ $\overline{\mathsf{S}}\mathsf{x}$ $-14c_1e^2 - 35c_2e^2 - 12e^x$
+ 10 c $e^{2x} + 10c_2e^{5x} + 60e^x$ $= 24e^{x}$

Thus, f solves (k) on I.
\nNow let's see if we can use f to get
\n
$$
0
$$
 solution to the initial-value problem
\n
$$
y'' - 7y' + 10y = 24e^x
$$
\n
$$
y'(0) = 6
$$
,
$$
y(0) = 0
$$
\n
$$
0
$$
00 the interval
$$
I = (-\infty, \infty)
$$

\nWe know that
$$
f(x) = c_1e^{2x} + c_2e^{2x} + 6e^x
$$

\nsolves
$$
y'' - 7y' + 10y = 24e^x
$$
.
\nLet's see if we can find c_1 , c_1 so
\n
$$
f_{01} + f_{02} = 6
$$
,
$$
f_{02} = 0
$$

\n
$$
f_{03} = 2c_1e^{0} + 5c_2e^{0} + 6e^{0} + 6e^{0} + 6e^{0} + 6e^{0}
$$

\n
$$
0 = c_1e^{0} + c_2e^{0} + 6e^{0} + 6e^{0} + 6e^{0} + 6e^{0}
$$

\nThis gives

$$
6 = 2c_1e^{0} + 5c_2e^{0} + c_1e^{0} + c_2e^{0} + c_1e^{0} + c_2e^{0} + c_1e^{0} + c_2e^{0} + c
$$

We get
$$
c_1 = -c_2 - 6
$$
 from 2.
\nPlug this into 0 + get $0 = 2(-c_2 - 6) + 5c_2$.
\nSo, $12 = 3c_2$.
\nSo, $c_2 = 4$.
\nThen, $c_1 = -4 - 6 = -10$.
\nThus, $f(x) = -10e^{2x} + 4e^{5x} + 6 \times$ solves
\n $4e$ initial-value Problem $(**)$
\n 50 formula – Value Problem $(**)$
\n $6e$ William $f(x) = c_1e^{2x} + c_2e^{5x} + 6e^{x}$
\nis a solution to $y'' - 7y' + 10y = 24e^{x}$
\nfor any constant c_1, c_2 .
\nIf we further impose the restriction
\nthat $y'(0) = 6$ and $y'(0) = 0$ then
\n $f(x) = -10e^{2x} + 4e^{5x} + 6x$
\nSolve the 0DE.

For the remainder of the class we will work on developing different methods to solve second arden ODES.

Below we have ^a theorem for linear second order ODEs on when solutions exist and are unique.

 Let Γ be an interval. Theorem: Let + (x) be $a, (\times)$, $a, (\times)$, Below we have a theorem for linear
second order ODEs on when solutions
exist and are unique.
Theorem: Let I be an interest and $(a_2(x))$
Let $a_2(x))$, $a_1(x)$, $a_2(x)$, and $a_1(x)$. Theorem: Let L action.
Let $a_2(x)$, $a_1(x)$, $a_n(x)$, $b(x)$ b
 L et $a_2(x)$, $a_1(x)$, $a_2(x) \neq 0$ I
X
I continuous on and a
I. If f_0 all x in $\frac{1}{x}$. $\frac{1}{x}$, $\frac{1}{x}$, then $\begin{array}{ll} \n\int a_{1}(x) \, dx \, dx & \n\end{array}$
 $\begin{array}{ll} \n\begin{array}{ll} \n\begin{array}{$ For the remainder of the class we will

vorits on developing different methods to

solve second order ODEs.

Below we have a theorem for linear

second order ODEs on when solvhoos

exist and are unique.

Theorem: Let I be X_{α} is a blem the initial-value problem $a_z(\times)$ y" + a, (x) y + ao(x)y = b(x) / $y'(\times_{0})=y'_{0}$, $y(\times_{0})=y_{0}$ $\begin{aligned} \mathcal{L} &\infty \subset \mathbb{R} \setminus \mathbb{R}^n, \ \mathcal{L} &\leq \mathbb{R}^n, \ \mathcal{$ has a unique solution on I.

We will begin with solving the
homogeneous linear second order ODE

$$
a_2(x) y'' + a_1(x) y' + a_2(x) y = 0
$$

 $a_2(x) y'' + a_1(x) y' + a_2(x) y = 0$
To do this we need to learn about
linear independence.

We will begin with solving the
\nhomogeneous linear second order ODE
\n
$$
G_2(x)g'' + G_1(x)g' + G_0(x)g = O
$$

\nTo do this we need to learn about
\nlinear independence.
\n Def : Let I be an interval.
\n Lef f, f₂ be functions defined on I.
\n Lef f, f₂ be functions defined on I.
\nWe say that f, and f₂ are linearly
\ndependent on I if one of them is
\na multiple of the other on I, that
\n $f_2(x) = c_1 f_1(x)$ for all x in I.
\n $f_1(x) = c_2 f_2(x)$ for all x in I.
\nwhere c_1, c_2 are constant.

If no such constants exist , It no such constants when
then we say that f, and fz are
linearly independent on I linearly independent on I.

If no such constants exist,
\nthen we say that f, and f z are
\nlinearly independent on I.
\n
$$
\frac{Ex: Let I = (-\infty, \infty).}{1:ex: Let I, (x) = x and I, (x) = -5x2.}\nLet f, (x) = x and linearly dependent\nThen f, and f z are linearly dependent\n
$$
f_2(x) = -5f_1(x)
$$
\nfor all x in I.
\n
$$
f_2(x) = -5f_2(x)
$$
\nfor y on could say that
\n
$$
f_1(x) = -\frac{1}{5}f_2(x)
$$
$$

 $f_{\text{D}r}$ all \times in

$$
Ex: Let T = (-\infty, \infty).
$$
\n
$$
Let T = 0.
$$
\n
$$
Let T = 0.
$$
\n
$$
Let T = 0.
$$
\n
$$
We will show that T = 0.
$$
\n
$$
Let T = 0.
$$
\n
$$
T = 0.
$$

$$
e^{0} = c_1 e^{0}
$$

$$
e^{5} = c_1 e^{2}
$$

$$
e^{5} = c_1 e^{2}
$$

$$
e^{2} = c_1 e^{2}
$$

Thus, $e^{3} = c_{1}$

But this is ^a contradiction since # e . Thus , no such c , exists . So , fz is not ^a multiple of f, or F. case ²: Can f , be ^a multiple of fe on ^F ? f, (x) ⁼Cf - (x) for all ^x in F. Suppose * for all ^X in C-0, 01 . Then, ex ⁼ 2 ^O *^X ⁼ ⁰ ^e ⁼ ce S So , ⁼et Then, ¹ = C2 3 ⁼ Cz -³ But this can't happen since I e. cannot be ^a multiple of fa.

So, $\frac{1}{2}$ By caseI and case ² we know that f , and fe are linearly independent on ^F .

$$
Det: Let f, and fz be differentiable\n
$$
f_{\text{function}} = \int_{\text{function of } f_1}^{\text{function of } f_2} \text{ and } f_2 \text{ is the}
$$
\n
$$
f_{\text{function}} = \int_{\text{function of } f_1}^{\text{function of } f_2} \text{, } f_2 \text{ is the}
$$
\n
$$
f_{\text{function}} = \int_{\text{function of } f_1}^{\text{function of } f_2} f_2(x) dx
$$
\n
$$
f_{\text{function}}(f_1, f_2) = \int_{\text{function of } f_1}^{\text{function of } f_2} f_2(x) dx
$$
\n
$$
f_{\text{inomial}}(f_1, f_2)
$$
$$

l

$$
\frac{Ex:}{f_z(x) = e^{5x}}
$$
 is
\n
$$
W(e^{2x}, e^{5x}) = \begin{vmatrix} e^{2x} & e^{5x} \\ 2e^{2x} & 5e^{5x} \end{vmatrix}
$$

$$
= \frac{e^{2x}}{3e^{2x}} \left(5e^{5x}\right) - \frac{e^{5x}}{2e^{2x}} \left(2e^{2x}\right)
$$

$$
= 3e^{7x}
$$

Theorem:	Let	be an interval.	Let
f_1, f_2 be differentiable on	T .	Tf	
f_1, f_2 be differentiable on	T .	Tf	
f_1, f_2 be differentiable on	T .	Tf	
f_1 the Wronskian W(f ₁ , f ₂) is not the zero function on	T .	f_1 and f_2	
f_1 and f_2 is not a complex number.	f_1 and f_2 are linearly independent.	f_1 and f_2 are linearly independent.	f_2

Ex:	\n Let \n $T = (-\infty, \infty)$ \n
\n Let \n $f_1(x) = e^{2x}, f_2(x) = e^{3x}$ \n	
\n $Let's show that$ \n f_1 \n and \n f_2 \n $are linearly$ \n	
\n $W(f_1, f_2) = 3e^{7x}$ \n	
\n $W(e, want + b, find, some x, in T = (-p, p)$ \n	
\n $where$ \n $W(f_1, f_2) = 3e^{7x} \cdot is not zero$ \n	
\n $Since: W(f_1, f_2) = 3e^{7x} \cdot is not zero$ \n	
\n $Since: W(f_1, f_2) = 3e^{7x} \cdot is not zero$ \n	
\n $or not 3e^{7x} \cdot is the zero function$ \n	
\n $W = 3e^{7x}$ \n	
\n $W = 3e^{7x}$ \n	
\n $W = 3e^{7x}$ \n	
\n $W = 3e^{7x}$ \n	
\n $W = 3e^{7x}$ \n	
\n $W(f_1, f_2)(0) = 3e^{7(0)} = 3e^0 = 3 \neq 0$ \n	
\n $W(f_1, f_2)(0) = 3e^{7(0)} = 3e^0 = 3 \neq 0$ \n	
\n $W(f_1, f_2)(0) = 3e^{7(0)} = 3e^0 = 3 \neq 0$ \n	
\n $W(f_1, f_2)(0) = 3e^{7(0)} = 3e^0 = 3 \ne$	

by the previous the
 $f(x) = e^{2x}$ and $f_2(x) = e$ Aus by the previous $f_1(x) = e^{sx}$
 $f_1(x) = e^{2x}$ and $f_2(x) = e^{sx}$
are linearly independent un $T = (-\infty, \infty)$

Theorem: [Linear, homogeneous, second order DDE]

\nLet
$$
\pm
$$
 be an interval.

\nLet $a_2(x)$, $a_1(x)$, $a_2(x)$, $b(x)$ be

\ncondition on \pm . Suppose $a_2(x|\pm 0)$

\nConsider $a_2(x) y'' + a_1(x) y' + a_2(x) y = 0$ (***)

\nSuppose that

\n\n- $f_1(x)$ and $f_2(x)$ are linearly independent on \pm , and $f_1(x)$ and $f_2(x)$ are both solutions to the following solution.
\n
\nThe every solution to $f_1(x)$ and $f_2(x)$ are both solutions for $f_1(x)$ and $f_2(x)$ are both solutions for $f_1(x)$ and $f_2(x)$ are both solutions for $f_1(x)$ and $f_2(x)$ are not possible.

\nThe form $g_1(x) = c_1 f_1(x) + c_2 f_2(x)$ and $g_1(x) = c_1 f_1(x) + c_2 f_2(x)$ and $f_2(x) = c_1 f_1(x) + c_2 f_2(x)$

\nFor some constant c_1 and c_2 are the same.

$$
\frac{1}{100} \times 1 = (-\infty, \infty).
$$
\nLet $f_1(x) = e^{2x}, f_2(x) = e^{5x}$.
\nWe saw above that f_1 and f_2
\nare linearly independent on T.
\nNote that f_1 and f_2 both solve
\nWe that f_1 and f_2 both solve
\nthe homogeneous, linear, second or den 0DE
\nthe *h*-mogeneous, linear, second or den 0DE
\n $y'' - 7y' + 10y = 0$

$$
\frac{\text{Check:}}{f_1(x)=e^{2x}}, f_1'(x)=2e^{2x}, f_1''(x)=4e^{2x} \\
\frac{f_1''-7f_1'+10f_1=4e^{2x}-14e^{2x}+10e^{2x}=0}{f_1''-7f_1'+10f_1=4e^{2x}-14e^{2x}+10e^{2x}=0}
$$
\n
$$
f_2(x)=e^{5x}, f_2'(x)=5e^{5x}, f_2''(x)=25e^{5x} \\
f_2''-7f_2'+10f_2=25e^{5x}-35e^{5x}+10e^{5x}=0
$$

Therefore the general solution To
\n
$$
y'' - 7y' + 10y = 0
$$
\nis
\n
$$
y_{h} = c_{1}e^{2x} + c_{2}e^{5x}
$$

Now we look at the general second Nuw we look at 1
order linear ODE. order linear ODE.

Now we look at the general second
\norder linear ODE.
\nTherefore, Let
$$
\mathbf{I}
$$
 be an interval.
\nLet $a_2(x)$, $a_1(x)$, $a_2(x)$, $b(x)$ be continuous
\non \mathbf{I} . Suppose $a_2(x) \ne 0$ for all x in \mathbf{I} .
\nConsider
\n $a_2(x)y'' + a_1(x)y' + a_2(x)y = b(x)$
\nSuppose that f_1 and f_2 are linearly
\nindependent solutions to the number of
\n $a_2(x)y'' + a_1(x)y' + a_2(x)y = 0$
\n $a_2(x)y'' + a_1(x)y' + a_2(x)y = 0$
\n $a_2(x)y'' + a_1(x)y' + a_2(x)y = b(x)$
\n $a_2(x)y'' + a_1(x)y' + a_2(x)y = b(x)$

Ex: Consider the ODE

\n
$$
y'' - 7y' + 10y = 24e^{x}
$$
\nOn the interval $\Gamma = (-\infty, \infty)$

\nWe saw earlier that $f_1(x) = e^{2x}$ and $f_2(x) = e^{2x}$

\nare linearly independent solutions to $y'' - 7y' + 10y = 0$

\nand so $(\frac{y_1 - c_1e^{2x} + c_2e^{2x}}{2x})$ (following that is a particular result)

\n
$$
L = \frac{1}{2}e^{x}
$$
\nSo, when $x = 0$ is a particular solution.

\n
$$
y_1(x) = 6e^{x}
$$
\nSo, when $y_1 = 7y' + 10y = 24e^{x}$ since:

\n
$$
y_p(x) = 6e^{x}
$$
\nBy $(x) = 6e^{x}$

\n
$$
y_p'(x) = 6e^{x}
$$
\nBy $(x) = 6e^{x}$

\n
$$
y_p'(x) = 6e^{x}
$$
\nBy $(x) = 6e^{x}$

\n
$$
y_p'' + 10 = 6e^{x} - 42e^{x} + 60e^{x} = 24e^{x}
$$
\nThus, by our theorems, every solution to $y'' - 7y' + 10y = 24e^{x}$

\n
$$
y'' - 7y' + 10y = 24e^{x}
$$
\nThus, by our theorems, every solution to $y'' - 7y' + 10y = 24e^{x}$

\n
$$
y'' - 7y' + 10y = 24e^{x}
$$
\n
$$
y'' - 7y' + 10y = 24e^{x}
$$
\n
$$
y'' - 7y' + 10y = 24e^{x}
$$
\n
$$
y'' - 7y' + 10y = 24e^{x}
$$
\n
$$
y'' - 7y' + 10y = 24e^{x}
$$
\n
$$
y'' - 7y' + 10y = 24e^{x}
$$
\n
$$
y'' - 7y' + 10y = 24e^{x}
$$
\n

Now our goal is to answer these questions:

(i) How do we find two linearly independent solution by
$$
a_2(x) y'' + a_1(x) y' + a_2(x) y = 0
$$

\n(j) How do we find a particular solution by $a_2(x) y'' + a_1(x) y' + a_2(x) y = 0$

\n(k) $a_2(x) y'' + a_1(x) y' + a_2(x) y = b(x)$

We will work on these problems over the next several lessons .

The following are proofs of some of the previous theorems for those that are interested. We won't cover this in class It's mostly for me :) You would need some linear algebra and proofs background to read.

Theorem: Let I be an interval. et I be an interval. Let
differentiable on I. If 」
工 f_{1} , f_{2} be differentiable on f_{1} , f_{2} not Theorem: Let I be an interval. Let

Trif₂ be differentiable on I. If

the Wronskian W(fight) is not

zero for at least one point in I,

then f, and f₂ are linearly independent

on I.

Then there exist $c_1 c_2$, not bo re Wronskian will!)
ern for at least one point in I, zero for zers for at least one linearly independent
then f₁ and f₂ are linearly independent
un I. proof:
proof: n + f are linearly dependent on 」
エ $\frac{1}{\sqrt{100}}$ from the and f₂ are
 $\frac{1}{\sqrt{100}}$ from the and f₂ are b ^{oth} $2e$ (0) where 2 Suppose T_1 and T_2 C_1 , C_2 , n_0
Then there $exist$ C_1 , C_2 , n_0 $c, f,$ $(x) + c_2 f_2(x) = 0$ for all ^X in I. Thus, hus,
 $c_1 f'_1(x) + c_2 f'_2(x) = 0$

for all x in I. Reorem: Let I be an

It is the differentiable of

then f and fz are line

then f and fz are line

on I.

Coof:

Then f and fz are line

on I.

Coof:

Cook in the state (21)

or all x in I.

Thus, W(fi,fk)(x) = 0

Thus, W(So, $\begin{pmatrix} f_1(x) & f_2(x) \\ f_1'(x) & f_2'(x) \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ So, $\begin{pmatrix} f_1(x) & f_2(x) \\ f_1'(x) & f_1'(x) \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
Since $\begin{pmatrix} c_1 \\ c_2 \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ we get that $\begin{pmatrix} f_1(x) & f_2(x) \\ f_1'(x) & f_2'(x) \end{pmatrix}$ is not invertible for each ^x in ^F . Thus , $\begin{aligned} \mathcal{E}_L^{\text{c}} &\neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ we get that $\bigcup_{i=1}^{n} f_i(x) \text{ for all } x \in \mathbb{R}^d. \end{aligned}$
interfible for each x in \mathcal{I}_1 . $\overline{\mathbb{Z}}$

Theorem:	Linear, homogeneous, second order DBE
Let \pm be an interval.	
Let $a_2(x), a_1(x), a_2(x), b(x)$ be	
Conflavous on \pm . Suppose $a_2(x) \neq 0$	
Consider	
$a_2(x), y'' + a_1(x)y' + a_2(x) y = 0$	
Suppose that	
$a_2(x), y'' + a_1(x)y' + a_2(x) y = 0$	
Suppose that	
$\cdot f_1(x)$ and $f_2(x)$ are linearly independent on \pm , and	
$\cdot f_1(x)$ and $f_2(x)$ are both solutions for (***)	
Then every solution to (***)	
of the form	
$c_1 f_1(x) + c_2 f_2(x)$	
f_0 is some constant c_1, c_2	
f_0 is some constant c_1, c_2	
$\frac{p(o_0 f_1)}{p_0}$	
By linearity, $c_1 f_1(x) + c_2 f_2(x)$ will be	
Solve f_1 and f_2 are linearly independent	

$$
\frac{10005}{9000}
$$
\n
\n
$$
\frac{10005}{99} \text{ linearity, } c_1f_1(x)+c_2f_2(x) \text{ will be a}
$$
\n
$$
5010 \text{ than } 10 \text{ (x**)}.
$$
\n
$$
5100 \text{ from } 10 \text{ and } f_2 \text{ are linearly independent}
$$

on II, by the previous theorem, there
exists
$$
\pm
$$
 in \pm where $W(f_1, f_2)$ (\pm) \pm 0.
\nLet \pm be some solution of $(\pm \pm \pm 1)$.
\nConsider the system
\n
$$
c_1 f_1(\pm) + c_2 f_2(\pm) = \pm 1
$$
\n
$$
c_1 f_1'(\pm) + c_2 f_2'(\pm) = \pm 1
$$
\nThis system will have a unique solution
\n
$$
f_1 = \pm 1
$$
\n
$$
f_1 = \
$$

Theorem: Let I be an interval.
\nLet
$$
a_2(x)
$$
, $a_1(x)$, $a_2(x)$, $b(x)$ be continuous
\non I. Suppose $a_2(x) \ne 0$ for all x in I.
\nConsider
\n $a_2(x)y'' + a_1(x)y' + a_2(x)y = b(x)$
\nSuppose that f₁ and f₂ are linearly
\nindependent solutions to the homogeneous eqn
\n $a_2(x)y'' + a_1(x)y' + a_2(x)y = 0$
\n $a_2(x)y'' + a_1(x)y' + a_2(x)y = 0$
\nor I.
\nSuppose that f_p is a particular solution to
\n $a_2(x)y'' + a_1(x)y' + a_2(x)y = b(x)$
\n $a_2(x)y'' + a_1(x)y' + a_2(x)y = b(x)$
\nThen every solution to
\n $a_2(x)y'' + a_1(x)y' + a_2(x)y = b(x)$
\n $a_2(x)y'' + a_1(x)y' + a_2(x)y = b(x)$
\n $f(x) = c_1 f_1(x) + c_2 f_2(x) + f_p(x)$
\n $f(x) = c_1 f_1(x) + c_2 f_2(x) + f_p(x)$

 P 100 Let $f \circ \log_{a} (x) y'' + a(x) y' + a_{e}(x) y = b(x)$. Then, $f - f_p$ will solve the homogeneous equation. Hence $f - f_\rho = c_1 f_1 + c_2 f_z$ for some $c_{12}c_{2}$. So, $f = c_{1}f_{1} + c_{2}f_{2} + f_{p}$